On the classification of perfect codes: Extended side class structures

Olof Heden*, Martin Hessler, Thomas Westerbäck

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

The two 1-error correcting perfect binary codes, C and C are said to be equivalent if there exists a permutation π of the set of the n coordinate positions and a word over(d, ̄) such that C = π (over(d, ̄) + C). Hessler defined C and C to be linearly equivalent if there exists a non-singular linear map φ such that C = φ (C). Two perfect codes C and C of length n will be defined to be extended equivalent if there exists a non-singular linear map φ and a word over(d, ̄) such that C = φ (over(d, ̄) + C) . Heden and Hessler, associated with each linear equivalence class an invariant LC and this invariant was shown to be a subspace of the kernel of some perfect code. It is shown here that, in the case of extended equivalence, the corresponding invariant will be the extension of the code LC. This fact will be used to give, in some particular cases, a complete enumeration of all extended equivalence classes of perfect codes.

AlkuperäiskieliEnglanti
Sivut43-55
Sivumäärä13
JulkaisuDiscrete Mathematics
Vuosikerta310
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 6 tammik. 2010
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'On the classification of perfect codes: Extended side class structures'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä