On Multi-Channel Huffman Codes for Asymmetric-Alphabet Channels

Hoover H.F. Yin, Xishi Wang, Ka Hei Ng, Russell W.F. Lai, Lucien K.L. Ng, Jack P.K. Ma

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however seldom investigated. While the special case with multiple symmetric-alphabet channels was studied a decade ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analogs of several classical results in single-channel source coding, e.g., a multi-channel Huffman code is an optimal tree-decodable code. We also show evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.

AlkuperäiskieliEnglanti
Otsikko2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
KustantajaIEEE
Sivut2024-2029
Sivumäärä6
ISBN (elektroninen)978-1-5386-8209-8
DOI - pysyväislinkit
TilaJulkaistu - 12 heinäk. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Information Theory - Virtual, online, Melbourne, Austraalia
Kesto: 12 heinäk. 202120 heinäk. 2021
https://2021.ieee-isit.org/

Conference

ConferenceIEEE International Symposium on Information Theory
LyhennettäISIT
Maa/AlueAustraalia
KaupunkiMelbourne
Ajanjakso12/07/202120/07/2021
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'On Multi-Channel Huffman Codes for Asymmetric-Alphabet Channels'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä