On model fitting and estimation of strictly stationary processes

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

158 Lataukset (Pure)

Abstrakti

Stationary processes have been extensively studied in the literature. Their applications include modeling and forecasting numerous real life phenomena such as natural disasters, sales and market movements. When stationary processes are considered, modeling is traditionally based on fitting an autoregressive moving average (ARMA) process. However, we challenge this conventional approach. Instead of fitting an ARMA model, we apply an AR(1) characterization in modeling any strictly stationary processes. Moreover, we derive consistent and asymptotically normal estimators of the corresponding model parameter.
AlkuperäiskieliEnglanti
Sivut381-406
JulkaisuModern Stochastics: Theory and Applications
Vuosikerta4
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 2017
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'On model fitting and estimation of strictly stationary processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä