Abstrakti
We consider minimum-cardinality Manhattan connected sets with arbitrary demands: Given a collection of points P in the plane, together with a subset of pairs of points in P (which we call demands), find a minimum-cardinality superset of P such that every demand pair is connected by a path whose length is the ℓ1 -distance of the pair. This problem is a variant of three well-studied problems that have arisen in computational geometry, data structures, and network design: (i) It is a node-cost variant of the classical Manhattan network problem, (ii) it is an extension of the binary search tree problem to arbitrary demands, and (iii) it is a special case of the directed Steiner forest problem. Since the problem inherits basic structural properties from the context of binary search trees, an O(logn) -approximation is trivial. We show that the problem is NP-hard and present an O(logn) -approximation algorithm. Moreover, we provide an O(loglogn) -approximation algorithm for complete k-partite demands as well as improved results for unit-disk demands and several generalizations. Our results crucially rely on a new lower bound on the optimal cost that could potentially be useful in the context of BSTs.
| Alkuperäiskieli | Englanti |
|---|---|
| Otsikko | Algorithms and Data Structures - 17th International Symposium, WADS 2021, Proceedings |
| Toimittajat | Anna Lubiw, Mohammad Salavatipour |
| Kustantaja | Springer |
| Sivut | 85-100 |
| Sivumäärä | 16 |
| ISBN (painettu) | 978-3-030-83507-1 |
| DOI - pysyväislinkit | |
| Tila | Julkaistu - 2021 |
| OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
| Tapahtuma | International Symposium on Algorithms and Data Structures - Virtual, Online Kesto: 9 elok. 2021 → 11 elok. 2021 Konferenssinumero: 17 |
Julkaisusarja
| Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
|---|---|
| Vuosikerta | 12808 LNCS |
| ISSN (painettu) | 0302-9743 |
| ISSN (elektroninen) | 1611-3349 |
Conference
| Conference | International Symposium on Algorithms and Data Structures |
|---|---|
| Lyhennettä | WADS 2021 |
| Kaupunki | Virtual, Online |
| Ajanjakso | 09/08/2021 → 11/08/2021 |