Abstrakti
This paper proposes a Bayesian approach to parameter estimation in electrocardiogram state space models. The on-line nature of the proposed method allows it to be applied to real-world electrocardiogram recordings with varying beat morphology, heart rate, and noise; it thereby provides clear advantages over the conventional Gaussian kernel approach. The applicability of the proposed method is demonstrated on benchmark electrocardiogram data. The results indicate that the method provides a promising framework for noise reduction and wave delineation in electrocardiograms.
| Alkuperäiskieli | Englanti |
|---|---|
| Otsikko | 2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Proceedings |
| Toimittajat | Nelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen |
| Kustantaja | IEEE |
| Vuosikerta | 2018-September |
| ISBN (elektroninen) | 9781538654774 |
| DOI - pysyväislinkit | |
| Tila | Julkaistu - 31 lokak. 2018 |
| OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
| Tapahtuma | IEEE International Workshop on Machine Learning for Signal Processing - Aalborg, Tanska Kesto: 17 syysk. 2018 → 20 syysk. 2018 Konferenssinumero: 28 |
Julkaisusarja
| Nimi | IEEE International Workshop on Machine Learning for Signal Processing |
|---|---|
| Kustantaja | IEEE |
| ISSN (painettu) | 2161-0363 |
| ISSN (elektroninen) | 2161-0371 |
Workshop
| Workshop | IEEE International Workshop on Machine Learning for Signal Processing |
|---|---|
| Lyhennettä | MLSP |
| Maa/Alue | Tanska |
| Kaupunki | Aalborg |
| Ajanjakso | 17/09/2018 → 20/09/2018 |