Abstrakti
This paper proposes a Bayesian approach to parameter estimation in electrocardiogram state space models. The on-line nature of the proposed method allows it to be applied to real-world electrocardiogram recordings with varying beat morphology, heart rate, and noise; it thereby provides clear advantages over the conventional Gaussian kernel approach. The applicability of the proposed method is demonstrated on benchmark electrocardiogram data. The results indicate that the method provides a promising framework for noise reduction and wave delineation in electrocardiograms.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 - Proceedings |
Toimittajat | Nelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen |
Kustantaja | IEEE |
Vuosikerta | 2018-September |
ISBN (elektroninen) | 9781538654774 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 31 lokak. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | IEEE International Workshop on Machine Learning for Signal Processing - Aalborg, Tanska Kesto: 17 syysk. 2018 → 20 syysk. 2018 Konferenssinumero: 28 |
Julkaisusarja
Nimi | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Kustantaja | IEEE |
ISSN (painettu) | 2161-0363 |
ISSN (elektroninen) | 2161-0371 |
Workshop
Workshop | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Lyhennettä | MLSP |
Maa/Alue | Tanska |
Kaupunki | Aalborg |
Ajanjakso | 17/09/2018 → 20/09/2018 |