Projekteja vuodessa
Abstrakti
Probabilistic circuits (PCs) offer a promising avenue to perform embedded reasoning under uncertainty. They support efficient and exact computation of various probabilistic inference tasks by design. Hence, hardware-efficient computation of PCs is highly interesting for edge computing applications. As computations in PCs are based on arithmetic with probability values, they are typically performed in the log domain to avoid underflow. Unfortunately, performing the log operation on hardware is costly. Hence, prior work has focused on computations in the linear domain, resulting in high resolution and energy requirements. This work proposes the first dedicated approximate computing framework for PCs that allows for low-resolution logarithm computations. We leverage Addition As Int, resulting in linear PC computation with simple hardware elements. Further, we provide a theoretical approximation error analysis and present an error compensation mechanism. Empirically, our method obtains up to 357× and 649× energy reduction on custom hardware for evidence and MAP queries respectively with little or no computational error.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 3979-3996 |
Sivumäärä | 18 |
Julkaisu | Proceedings of Machine Learning Research |
Vuosikerta | 244 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Uncertainty in Artificial Intelligence - Barcelona, Espanja Kesto: 15 heinäk. 2024 → 19 heinäk. 2024 Konferenssinumero: 40 |
Sormenjälki
Sukella tutkimusaiheisiin 'On Hardware-efficient Inference in Probabilistic Circuits'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
SUSTAIN: Smart Building Sensitive To Daily Sentiment
Sigg, S. (Vastuullinen tutkija)
01/10/2022 → 31/03/2026
Projekti: EU: Framework programmes funding
-
Trapp Martin: Exploiting Probabilistic Circuits for Stochastic Processes and Deep Learning
Trapp, M. (Vastuullinen tutkija)
01/09/2022 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
WHISTLE: When integrated systems gain life experience: towards self-learning circuits with resource-efficient embedded artificial intelligence
Andraud, M. (Vastuullinen tutkija), Adam, K. (Projektin jäsen), Yao, L. (Projektin jäsen), Periasamy, K. (Projektin jäsen), Leslin, J. (Projektin jäsen) & Bhowmick, S. (Projektin jäsen)
01/09/2020 → 31/08/2024
Projekti: Academy of Finland: Other research funding
Laitteet
-
Aalto Electronics-ICT
Ryynänen, J. (Manager)
Elektroniikan ja nanotekniikan laitosLaitteistot/tilat: Facility
-