On Hardware-efficient Inference in Probabilistic Circuits

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

3 Lataukset (Pure)

Abstrakti

Probabilistic circuits (PCs) offer a promising avenue to perform embedded reasoning under uncertainty. They support efficient and exact computation of various probabilistic inference tasks by design. Hence, hardware-efficient computation of PCs is highly interesting for edge computing applications. As computations in PCs are based on arithmetic with probability values, they are typically performed in the log domain to avoid underflow. Unfortunately, performing the log operation on hardware is costly. Hence, prior work has focused on computations in the linear domain, resulting in high resolution and energy requirements. This work proposes the first dedicated approximate computing framework for PCs that allows for low-resolution logarithm computations. We leverage Addition As Int, resulting in linear PC computation with simple hardware elements. Further, we provide a theoretical approximation error analysis and present an error compensation mechanism. Empirically, our method obtains up to 357× and 649× energy reduction on custom hardware for evidence and MAP queries respectively with little or no computational error.

AlkuperäiskieliEnglanti
Sivut3979-3996
Sivumäärä18
JulkaisuProceedings of Machine Learning Research
Vuosikerta244
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Uncertainty in Artificial Intelligence - Barcelona, Espanja
Kesto: 15 heinäk. 202419 heinäk. 2024
Konferenssinumero: 40

Sormenjälki

Sukella tutkimusaiheisiin 'On Hardware-efficient Inference in Probabilistic Circuits'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä