Abstrakti
In the Maximum Balanced Biclique Problem (MBB), we are given an n-vertex graph G= (V, E), and the goal is to find a balanced complete bipartite subgraph with q vertices on each side while maximizing q. The MBB problem is among the first known NP-hard problems, and has recently been shown to be NP-hard to approximate within a factor n1 - o ( 1 ), assuming the Small Set Expansion hypothesis [Manurangsi, ICALP 2017]. An O(n/ log n) approximation follows from a simple brute-force enumeration argument. In this paper, we provide the first approximation guarantees beyond brute-force: (1) an O(n/ log 2n) efficient approximation algorithm, and (2) a parameterized approximation that returns, for any r∈ N, an r-approximation algorithm in time exp(O(nrlogr)). To obtain these results, we translate the subgraph removal arguments of [Feige, SIDMA 2004] from the context of finding a clique into one of finding a balanced biclique. The key to our proof is the use of matching edges to guide the search for a balanced biclique.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Graph-Theoretic Concepts in Computer Science - 46th International Workshop, WG 2020, Revised Selected Papers |
Toimittajat | Isolde Adler, Haiko Müller |
Kustantaja | Springer |
Sivut | 238-247 |
Sivumäärä | 10 |
ISBN (painettu) | 9783030604394 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Workshop on Graph-Theoretic Concepts in Computer Science - Leeds, Iso-Britannia Kesto: 24 kesäk. 2020 → 26 kesäk. 2020 Konferenssinumero: 46 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Kustantaja | Springer |
Vuosikerta | 12301 LNCS |
ISSN (painettu) | 0302-9743 |
ISSN (elektroninen) | 1611-3349 |
Workshop
Workshop | International Workshop on Graph-Theoretic Concepts in Computer Science |
---|---|
Lyhennettä | WG |
Maa/Alue | Iso-Britannia |
Kaupunki | Leeds |
Ajanjakso | 24/06/2020 → 26/06/2020 |