Abstrakti
Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 191-205 |
Sivumäärä | 15 |
Julkaisu | Studia Mathematica |
Vuosikerta | 213 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2012 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |