Abstrakti
First we introduce a mesh density function that is used to define a criterion to decide, where a simplicial mesh should be fine (dense) and where it should be coarse. Further, we propose a new bisection algorithm that chooses for bisection an edge in a given mesh associated with the maximum value of the criterion function. Dividing this edge at its midpoint, we correspondingly bisect all simplices sharing this edge. Repeating this process, we construct a sequence of conforming nested simplicial meshes whose shape is determined by the mesh density function. We prove that the corresponding mesh size of the sequence tends to zero for d∈=∈2, 3 as the bisection algorithm proceeds. It is also demonstrated numerically that the algorithm seems to produce only a finite number of similarity-distinct triangles.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Large-Scale Scientific Computing - 7th International Conference, LSSC 2009, Revised Papers |
Sivut | 571-579 |
Sivumäärä | 9 |
Vuosikerta | 5910 LNCS |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2010 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Large-Scale Scientific Computations - Sozopol, Bulgaria Kesto: 4 kesäk. 2009 → 8 kesäk. 2009 Konferenssinumero: 7 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Vuosikerta | 5910 LNCS |
ISSN (painettu) | 03029743 |
ISSN (elektroninen) | 16113349 |
Conference
Conference | International Conference on Large-Scale Scientific Computations |
---|---|
Lyhennettä | LSSC |
Maa/Alue | Bulgaria |
Kaupunki | Sozopol |
Ajanjakso | 04/06/2009 → 08/06/2009 |