Ollivier-Ricci Curvature for Hypergraphs: A Unified Framework

Corinna Coupette, Sebastian Dalleiger, Bastian Rieck

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Bridging geometry and topology, curvature is a powerful and expressive invariant. While the utility of curvature has been theoretically and empirically confirmed in the context of manifolds and graphs, its generalization to the emerging domain of hypergraphs has remained largely unexplored. On graphs, the Ollivier-Ricci curvature measures differences between random walks via Wasserstein distances, thus grounding a geometric concept in ideas from probability theory and optimal transport. We develop Orchid, a flexible framework generalizing Ollivier-Ricci curvature to hypergraphs, and prove that the resulting curvatures have favorable theoretical properties. Through extensive experiments on synthetic and real-world hypergraphs from different domains, we demonstrate that Orchid curvatures are both scalable and useful to perform a variety of hypergraph tasks in practice.
AlkuperäiskieliEnglanti
Otsikko11th International Conference on Learning Representations (ICLR 2023)
KustantajaCurran Associates Inc.
ISBN (painettu)9781713899259
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Learning Representations - Kigali, Ruanda
Kesto: 1 toukok. 20235 toukok. 2023
Konferenssinumero: 11
https://iclr.cc/

Conference

ConferenceInternational Conference on Learning Representations
LyhennettäICLR
Maa/AlueRuanda
KaupunkiKigali
Ajanjakso01/05/202305/05/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Ollivier-Ricci Curvature for Hypergraphs: A Unified Framework'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä