Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Standard

Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction. / Masuda, Shumpei; Tan, Kuan Y.; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Silveri, Matti; Grabert, Hermann; Möttönen, Mikko.

julkaisussa: Scientific Reports, Vuosikerta 8, Nro 1, 3966, 01.12.2018, s. 1-8.

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Harvard

APA

Vancouver

Author

Masuda, Shumpei ; Tan, Kuan Y. ; Partanen, Matti ; Lake, Russell E. ; Govenius, Joonas ; Silveri, Matti ; Grabert, Hermann ; Möttönen, Mikko. / Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction. Julkaisussa: Scientific Reports. 2018 ; Vuosikerta 8, Nro 1. Sivut 1-8.

Bibtex - Lataa

@article{756b8ea8498f4ddfbaaf2ba71ac2b289,
title = "Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction",
abstract = "We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.",
author = "Shumpei Masuda and Tan, {Kuan Y.} and Matti Partanen and Lake, {Russell E.} and Joonas Govenius and Matti Silveri and Hermann Grabert and Mikko M{\"o}tt{\"o}nen",
note = "| openaire: EC/H2020/681311/EU//QUESS",
year = "2018",
month = "12",
day = "1",
doi = "10.1038/s41598-018-21772-5",
language = "English",
volume = "8",
pages = "1--8",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

RIS - Lataa

TY - JOUR

T1 - Observation of microwave absorption and emission from incoherent electron tunneling through a normal-metal-insulator-superconductor junction

AU - Masuda, Shumpei

AU - Tan, Kuan Y.

AU - Partanen, Matti

AU - Lake, Russell E.

AU - Govenius, Joonas

AU - Silveri, Matti

AU - Grabert, Hermann

AU - Möttönen, Mikko

N1 - | openaire: EC/H2020/681311/EU//QUESS

PY - 2018/12/1

Y1 - 2018/12/1

N2 - We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.

AB - We experimentally study nanoscale normal-metal-insulator-superconductor junctions coupled to a superconducting microwave resonator. We observe that bias-voltage-controllable single-electron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent single-mode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with low-temperature electronics and offers convenient in-situ electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normal-metal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantum-circuit refrigerator.

UR - http://www.scopus.com/inward/record.url?scp=85042876781&partnerID=8YFLogxK

U2 - 10.1038/s41598-018-21772-5

DO - 10.1038/s41598-018-21772-5

M3 - Article

VL - 8

SP - 1

EP - 8

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 3966

ER -

ID: 18275672