Numerical analysis of the bending strength of model-scale ice

Rüdiger U.Franz von Bock und Polach

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    5 Sitaatiot (Scopus)
    313 Lataukset (Pure)


    Performance simulation tools are of high significance for the design and especially the optimization of ships and offshore structures. However, for ice covered waters such tools are hardly available and are either costly as ice model tests or have a limited range of validity, such as semi-empirical formulas. This arises from the complexity of ice as material and insufficient knowledge on its mechanics. This paper presents a numerical analysis for model-scale ice in which material parameters are developed that can represent: tension, compression and in-situ downward bending. Those parameters are incorporated into a material model following the Lemaitre damage law. The developed material characteristics for model-scale ice are intended to support the design process of ships and offshore structures. The key phenomenon joining the deformation processes in bending together with those in compression and tension, proved to be the through thickness dependency of properties. This analysis and development is a continuation of previously presented parameters for compression and tension and is developed in agreement with experimental evidence.
    JulkaisuCold Regions Science and Technology
    DOI - pysyväislinkit
    TilaJulkaistu - 2015
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu


    • Model-scale ice; Bending strength simulation; Temperature gradient; Strength property distribution

    Sormenjälki Sukella tutkimusaiheisiin 'Numerical analysis of the bending strength of model-scale ice'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Laitteet

  • Siteeraa tätä