Novel biobjective clustering (BiGC) based on cooperative game theory

Vikas K. Garg*, Y. Narahari, Murty Narasimha

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

37 Sitaatiot (Scopus)

Abstrakti

We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.

AlkuperäiskieliEnglanti
Artikkeli6175898
Sivut1070-1082
Sivumäärä13
JulkaisuIEEE Transactions on Knowledge and Data Engineering
Vuosikerta25
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 2013
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Novel biobjective clustering (BiGC) based on cooperative game theory'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä