Abstrakti

In biomedical applications it is often necessary to estimate a physiological response to a treatment consisting of multiple components, and learn the separate effects of the components in addition to the joint effect. Here, we extend existing probabilistic nonparametric approaches to explicitly address this problem. We also develop a new convolution-based model for composite treatment–response curves that is more biologically interpretable. We validate our models by estimating the impact of carbohydrate and fat in meals on blood glucose. By differentiating treatment components, incorporating their dosages, and sharing statistical information across patients via a hierarchical multi-output Gaussian process, our method improves prediction accuracy over existing approaches, and allows us to interpret the different effects of carbohydrates and fat on the overall glucose response.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 3rd Machine Learning for Health Symposium
KustantajaJMLR
Sivut428-444
TilaJulkaistu - 4 jouluk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaMachine Learning for Health Workshop - New Orleans, Yhdysvallat
Kesto: 10 jouluk. 202310 jouluk. 2023
Konferenssinumero: 3

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaJMLR
Vuosikerta225
ISSN (elektroninen)2640-3498

Workshop

WorkshopMachine Learning for Health Workshop
LyhennettäML4H
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso10/12/202310/12/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Nonparametric modeling of the composite effect of multiple nutrients on blood glucose dynamics'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä