Nonnegative Structured Kruskal Tensor Regression

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

25 Lataukset (Pure)

Abstrakti

Many contemporary data analysis problems use tensors (multidimensional arrays) as covariates. For example, regression or classification tasks may need to be performed on a set of image covariates sampled from diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), or hyperspectral imaging (HSI). By en-forcing a low-rank constraint on the parameter tensor, tensor regression models effectively leverage the temporal and spatial structure of tensor covariates. In this paper, we study Kruskal tensor regression with sparsity and smoothness inducing regularization and non-negativity constraints. We solve the corresponding penalized nonnegative Kruskal tensor regression (KTR) problem using an efficient block-wise alternating minimization method. The efficiency of the proposed approach is illustrated via simulations.

AlkuperäiskieliEnglanti
Otsikko2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023
KustantajaIEEE
Sivut441-445
Sivumäärä5
ISBN (elektroninen)979-8-3503-4452-3
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Herradura, Costa Rica
Kesto: 10 jouluk. 202313 jouluk. 2023
Konferenssinumero: 9

Julkaisusarja

Nimi2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2023

Workshop

WorkshopIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
LyhennettäCAMSAP
Maa/AlueCosta Rica
KaupunkiHerradura
Ajanjakso10/12/202313/12/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Nonnegative Structured Kruskal Tensor Regression'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä