Abstrakti
This paper is concerned with black-box identification of nonlinear state space models. By using a basis function expansion within the state space model, we obtain a flexible structure. The model is identified using an expectation maximization approach, where the states and the parameters are updated iteratively in such a way that a maximum likelihood estimate is obtained. We use recent particle methods with sound theoretical properties to infer the states, whereas the model parameters can be updated using closed-form expressions by exploiting the fact that our model is linear in the parameters. Not to over-fit the flexible model to the data, we also propose a regularization scheme without increasing the computational burden. Importantly, this opens up for systematic use of regularization in nonlinear state space models. We conclude by evaluating our proposed approach on one simulation example and two real-data problems.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015 |
Kustantaja | IEEE |
Sivut | 481-484 |
Sivumäärä | 4 |
ISBN (painettu) | 9781479919635 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 14 tammik. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Cancun, Meksiko Kesto: 13 jouluk. 2015 → 16 jouluk. 2015 Konferenssinumero: 6 http://inspire.rutgers.edu/camsap2015/ |
Workshop
Workshop | IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing |
---|---|
Lyhennettä | CAMSAP |
Maa/Alue | Meksiko |
Kaupunki | Cancun |
Ajanjakso | 13/12/2015 → 16/12/2015 |
www-osoite |