Nonlinear state space model identification using a regularized basis function expansion

Andreas Svensson, Thomas B. Schön, Arno Solin, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)

Abstrakti

This paper is concerned with black-box identification of nonlinear state space models. By using a basis function expansion within the state space model, we obtain a flexible structure. The model is identified using an expectation maximization approach, where the states and the parameters are updated iteratively in such a way that a maximum likelihood estimate is obtained. We use recent particle methods with sound theoretical properties to infer the states, whereas the model parameters can be updated using closed-form expressions by exploiting the fact that our model is linear in the parameters. Not to over-fit the flexible model to the data, we also propose a regularization scheme without increasing the computational burden. Importantly, this opens up for systematic use of regularization in nonlinear state space models. We conclude by evaluating our proposed approach on one simulation example and two real-data problems.

AlkuperäiskieliEnglanti
Otsikko2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2015
KustantajaIEEE
Sivut481-484
Sivumäärä4
ISBN (painettu)9781479919635
DOI - pysyväislinkit
TilaJulkaistu - 14 tammik. 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Cancun, Meksiko
Kesto: 13 jouluk. 201516 jouluk. 2015
Konferenssinumero: 6
http://inspire.rutgers.edu/camsap2015/

Workshop

WorkshopIEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
LyhennettäCAMSAP
Maa/AlueMeksiko
KaupunkiCancun
Ajanjakso13/12/201516/12/2015
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Nonlinear state space model identification using a regularized basis function expansion'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä