Non-iterative subspace-based DOA estimation in the presence of nonuniform noise

Tutkimustuotos: Lehtiartikkeli

Tutkijat

Organisaatiot

  • Shiraz University

Kuvaus

The uniform white noise assumption is one of the basic assumptions in most of the existing direction-of-arrival (DOA) estimation methods. In many applications, however, the nonuniform white noise model is more adequate. Then, the noise variances at different sensors have to be also estimated as nuisance parameters while estimating DOAs. In this letter, different from the existing iterative methods that address the problem of nonuniform noise, a non-iterative two-phase subspace-based DOA estimation method is proposed. The first phase of the method is based on estimating the noise subspace via eigendecomposition (ED) of some properly designed matrix and it avoids estimating the noise covariance matrix. In the second phase, the results achieved in the first phase are used to estimate the noise covariance matrix, followed by estimating the noise subspace via generalized ED. Since the proposed method estimates DOAs in a non-iterative manner, it is computationally more efficient and has no convergence issues as compared to the existing methods. Simulation results demonstrate better performance of the proposed method as compared to other existing state-of-the-art methods.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli8684312
Sivut848-852
Sivumäärä5
JulkaisuIEEE Signal Processing Letters
Vuosikerta26
Numero6
TilaJulkaistu - 1 kesäkuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 33771652