Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model

Ghada Hassan, Nina Forsman, Xing Wan, Leena Keurulainen, Luis M. Bimbo, Susanne Stehl, Frits Van Charante, Michael Chrubasik, Aruna S. Prakash, Leena Sisko Johansson, Declan C. Mullen, Blair F. Johnston, Ralf Zimmermann, Carsten Werner, Jari Yli-Kauhaluoma, Tom Coenye, Per E.J. Saris, Monika Österberg*, Vânia M. Moreira*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
39 Lataukset (Pure)

Abstrakti

Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials.

AlkuperäiskieliEnglanti
Sivut4095-4108
Sivumäärä14
JulkaisuACS Applied Bio Materials
Vuosikerta3
Numero7
DOI - pysyväislinkit
TilaJulkaistu - 20 heinäkuuta 2020
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä