Abstrakti
We apply basic statistical reasoning to signal reconstruction by machine learning - learning to map corrupted observations to clean signals - with a simple and powerful conclusion: It is possible to learn to restore images by only looking at corrupted examples, at performance at and some-times exceeding training using clean data, without explicit image priors or likelihood models of the corruption. In practice, we show that a single model learns photographic noise removal, denois- ing synthetic Monte Carlo images, and reconstruction of undersampled MRI scans - all corrupted by different processes - based on noisy data only.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 35th International Conference on Machine Learning, ICML 2018 |
Toimittajat | Jennifer Dy, Andreas Krause |
Kustantaja | International Machine Learning Society |
Sivut | 4620-4631 |
Sivumäärä | 12 |
Vuosikerta | 7 |
ISBN (elektroninen) | 9781510867963 |
Tila | Julkaistu - 1 tammik. 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | INTERNATIONAL CONFERENCE ON MACHINE LEARNING - Stockholm, Ruotsi Kesto: 10 heinäk. 2018 → 15 heinäk. 2018 Konferenssinumero: 35 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Numero | 80 |
ISSN (elektroninen) | 1938-7228 |
Conference
Conference | INTERNATIONAL CONFERENCE ON MACHINE LEARNING |
---|---|
Lyhennettä | ICML |
Maa/Alue | Ruotsi |
Kaupunki | Stockholm |
Ajanjakso | 10/07/2018 → 15/07/2018 |