Nickel Metal Hydride Battery Waste : Mechano-hydrometallurgical Experimental Study on Recycling Aspects

Antti Porvali, Severi Ojanen, Benjamin P. Wilson, Rodrigo Serna-Guerrero, Mari Lundström*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

32 Sitaatiot (Scopus)
178 Lataukset (Pure)


In this research, the recycling of industrially collected and crushed nickel metal hydride battery waste, rich in valuable metals such as Ni and rare earth elements (REE), was investigated. The crushed waste was characterized based on elemental distribution per particle size class and density. Although issues with sieving, such as agglomeration of shredded separator fibers, were observed, a good separation of Fe and plastics could be achieved by using a 1-mm sieve size. It was observed that, as the waste battery particles were washed with water, some organic compounds were dissolved. Acid consumption of 14 mol H+ ions per 1 kg of battery sample (sieve fraction—1 mm) was determined to be sufficient to achieve the desired final pH of < 1. Selectivity of the leaching at higher equilibrium pH was also investigated by using dilute H2SO4. Pregnant leach solution rich in Ni (46 g/L) and REEs (La: 9 g/L, Ce: 7.5 g/L, Pr: 1.4 g/L, Sm: 0.29 g/L, Y: 0.17 g/L) was obtained and REE precipitation was investigated as a function of dilute Na2SO4 solution concentration (0.01–0.5 M) at a temperature of 50 °C. The best precipitation efficiency was achieved with a Na:REE ratio of 9.1, which resulted in a > 99% precipitation efficiency for the REEs.

JulkaisuJournal of Sustainable Metallurgy
DOI - pysyväislinkit
TilaJulkaistu - 1 maalisk. 2020
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä


Sukella tutkimusaiheisiin 'Nickel Metal Hydride Battery Waste : Mechano-hydrometallurgical Experimental Study on Recycling Aspects'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä