New Robust Sparse Convolutional Coding Inversion Algorithm for Ground Penetrating Radar Images

Matthieu Gallet, Ammar Mian, Guillaume Ginolhac, Esa Ollila, Nickolas Stelzenmuller

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

29 Lataukset (Pure)

Abstrakti

In this paper, we propose two algorithms to enhance the interpretability of the hyperbola in B-scans obtained with a Ground Penetrating Radar (GPR). These hyperbolas are the responses of buried objects or cavities. To correctly detect and classify them, a denoising is typically necessary for GPR images as the signal-to-noise ratio is low, and the various interfaces naturally present in the earth have a strong response. Both algorithms are based on a sparse convolutional coding model plus a low rank component. It is solved through an Alternating Direction Method of Multipliers (ADMM) framework. In order to take into account the presence of outliers and the artifacts caused by the acquisition, the second algorithm is based on the Huber norm instead of the classic <italic>L</italic>2-norm. These algorithms are tested on a real dataset labeled by geophysicists. The results show the denoising efficiency of this approach, and in particular the robustness of the second algorithm.

AlkuperäiskieliEnglanti
Artikkeli5103814
Sivumäärä14
JulkaisuIEEE Transactions on Geoscience and Remote Sensing
Vuosikerta61
Varhainen verkossa julkaisun päivämäärä19 huhtik. 2023
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'New Robust Sparse Convolutional Coding Inversion Algorithm for Ground Penetrating Radar Images'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä