New Results on Tripod Packings

Tutkimustuotos: Lehtiartikkeli

Tutkijat

Organisaatiot

Kuvaus

Consider an n× n× n cube Q consisting of n 3 unit cubes. A tripod of order n is obtained by taking the 3 n- 2 unit cubes along three mutually adjacent edges of Q. The unit cube corresponding to the vertex of Q where the edges meet is called the center cube of the tripod. The function f(n) is defined as the largest number of integral translates of such a tripod that have disjoint interiors and whose center cubes coincide with unit cubes of Q. The value of f(n) has earlier been determined for n≤ 9. The function f(n) is here studied in the framework of the maximum clique problem, and the values f(10) = 32 and f(11) = 38 are obtained computationally. Moreover, by prescribing symmetries, constructive lower bounds on f(n) are obtained for n≤ 26. A conjecture that f(n) is always attained by a packing with a symmetry of order 3 that rotates Q around the axis through two opposite vertices is disproved.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut271–284
Sivumäärä14
JulkaisuDiscrete and Computational Geometry
Vuosikerta61
Numero2
Varhainen verkossa julkaisun päivämäärä18 kesäkuuta 2018
TilaJulkaistu - 15 maaliskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 26703692