Neural network simulation for non-MSMPR crystallization

Z. Sha*, M. Louhi-Kultanen, S. Palosaari

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

6 Sitaatiot (Scopus)

Abstrakti

A neural network model has been developed for the simulation of steady state industrial crystallizers where, in general, the crystal size distribution cannot be described by simple mass and energy balances, i.e. they are non-MSMPR crystallizers. The model is based on fundamental equations of steady state suspension crystallization. The parameters in the nucleation rate have been chosen for the simulation of different chemicals. The particle size distribution of the product is expressed by the Rosin-Rammler equation. Different operating modes and deviations in crystal size distribution caused by the suspension being imperfectly mixed are presented by different values of modified Rosin-Rammler number. The ranges of variables in the neural network have been chosen based on data for industrial crystallizers. The dominant size of particle, and the productivity of the crystallizer can be predicted with input information. Thus, this neural network can be used for most chemicals and for different kinds of operating conditions. The results predicted with the neural network have been verified by solving the fundamental equations and by comparison with experimental data.

AlkuperäiskieliEnglanti
Sivut101-107
Sivumäärä7
JulkaisuChemical Engineering Journal
Vuosikerta81
Numero1-3
DOI - pysyväislinkit
TilaJulkaistu - 1 tammik. 2001
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Neural network simulation for non-MSMPR crystallization'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä