Abstrakti
The rate profile at which fuel is injected into an inter-nal combustion (IC) diesel engine is among the most important parameters affecting the engine performance and exhaust emissions. However, it is notoriously difficult to measure on-line in practice. This article studies the application of neural network based methods for identification of the diesel fuel in-jection rate profile from in-cylinder pressure data, for which measurements are easy to obtain online from a running en-gine. The proposed approach provides a prediction of the injection rate profile as a function of the crank angle, and an estimate of the uncertainty associated with the prediction. Among others, the results presented herein may be benefi-cial for real-time injector fault detection and also for devising novel optimal control strategies for minimizing exhaust emissions of diesel engines.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 9th International Conference on Industrial Technology and Management, ICITM 2020 |
Kustantaja | IEEE |
Sivut | 138-143 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781728143064 |
DOI - pysyväislinkit | |
Tila | Julkaistu - helmik. 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Industrial Technology and Management - Oxford, Iso-Britannia Kesto: 11 helmik. 2020 → 13 helmik. 2020 Konferenssinumero: 9 |
Conference
Conference | International Conference on Industrial Technology and Management |
---|---|
Lyhennettä | ICITM |
Maa/Alue | Iso-Britannia |
Kaupunki | Oxford |
Ajanjakso | 11/02/2020 → 13/02/2020 |