Neural network based hygrothermal prediction for deterioration risk analysis of surface-protected concrete façade element

Woubishet Zewdu Taffese*, Esko Sistonen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

21 Sitaatiot (Scopus)

Abstrakti

Accurate prediction of hygrothermal behavior in the concrete is vital requirements to make more realistic service-life extension decisions. In this work, a neural network based hygrothermal prediction model to estimate a temporal hygrothermal condition in surface-protected concrete façade members is developed and presented. The model learns the case-specific features of hygrothermal behavior using the two years temperature and relative humidity data obtained from the installed probes. The performance evaluation confirms that the model describes the hygrothermal behavior inside the concrete façade with a high accuracy. This in turn enables to assess the corrosion rate as well as deterioration risk levels caused by frost and chemical attacks while identifying the appropriate surface protection system.

AlkuperäiskieliEnglanti
Sivut34-48
Sivumäärä15
JulkaisuConstruction and Building Materials
Vuosikerta113
DOI - pysyväislinkit
TilaJulkaistu - 15 kesäk. 2016
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Neural network based hygrothermal prediction for deterioration risk analysis of surface-protected concrete façade element'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä