Neural Network and Random Forest Models in Protein Function Prediction

Kai Hakala*, Suwisa Kaewphan, Jari Bjorne, Farrokh Mehryary, Hans Moen, Martti Tolvanen, Tapio Salakoski, Filip Ginter

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

10 Sitaatiot (Scopus)

Abstrakti

Over the past decade, the demand for automated protein function prediction has increased due to the volume of newly sequenced proteins. In this paper, we address the function prediction task by developing an ensemble system automatically assigning Gene Ontology (GO) terms to the given input protein sequence. We develop an ensemble system which combines the GO predictions made by random forest (RF) and neural network (NN) classifiers. Both RF and NN models rely on features derived from BLAST sequence alignments, taxonomy and protein signature analysis tools. In addition, we report on experiments with a NN model that directly analyzes the amino acid sequence as its sole input, using a convolutional layer. The Swiss-Prot database is used as the training and evaluation data. In the CAFA3 evaluation, which relies on experimental verification of the functional predictions, our submitted ensemble model demonstrates competitive performance ranking among top-10 best-performing systems out of over 100 submitted systems. In this paper, we evaluate and further improve the CAFA3-submitted system. Our machine learning models together with the data pre-processing and feature generation tools are publicly available as an open source software at https://github.com/TurkuNLP/CAFA3.

AlkuperäiskieliEnglanti
Sivut1772-1781
Sivumäärä10
JulkaisuIEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
Vuosikerta19
Numero3
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Neural Network and Random Forest Models in Protein Function Prediction'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä