Network-side Localization via Semi-Supervised Multi-point Channel Charting

Junquan Deng, Olav Tirkkonen, Jianzhao Zhang, Xianlong Jiao, Christoph Studer

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

5 Sitaatiot (Scopus)
128 Lataukset (Pure)

Abstrakti

We consider the network-side mobile localization problem in future 5G and beyond wireless networks with distributed multi-antenna base stations (BSs). For this application, we propose a semi-supervised multi-point channel charting (SS-MPCC) framework, which consists of (i) collaborative collection of channel state information (CSI) and other side-information by distributed BSs; (ii) local CSI feature extraction and self-learning of a dissimilarity metric, and (iii) global graph construction and constrained manifold learning. We show that side-information from routine network operations, including timestamps, channel qualities, and a small set of labeled samples, can be exploited to construct a consistent global graph. The graph is then mapped to a 2D channel chart using constrained manifold learning for localization purposes. We evaluate the performance of SS-MPCC in a simulated urban outdoor scenario with realistic user motion. Our results show that SS-MPCC achieves a mean localization error of 5.6 m with only 10% of labeled CSI samples. SS-MPCC does not require accurate synchronization among multiple BSs and is promising for future cellular localization.
AlkuperäiskieliEnglanti
OtsikkoProceedings of International Wireless Communications and Mobile Computing, IWCMC 2021
KustantajaIEEE
Sivut1654-1660
Sivumäärä7
ISBN (elektroninen)978-1-7281-8616-0
ISBN (painettu)978-1-7281-8617-7
DOI - pysyväislinkit
TilaJulkaistu - 9 elok. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Wireless Communications and Mobile Computing Conference - Harbin, Kiina
Kesto: 28 kesäk. 20212 heinäk. 2021

Conference

ConferenceInternational Wireless Communications and Mobile Computing Conference
LyhennettäIWCMC
Maa/AlueKiina
KaupunkiHarbin
Ajanjakso28/06/202102/07/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Network-side Localization via Semi-Supervised Multi-point Channel Charting'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä