NEO-Fuzzy Neural Networks for Knowledge Based Modeling and Control of Complex Dynamical Systems

Yancho Todorov*, Margarita Terziyska

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaChapterScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Capturing the dynamics and control of fast complex nonlinear systems often requires the application of computationally efficient modeling structures in order to track the system behavior without loss of accuracy and to provide reliable predictions on purpose to process control. An available approach is to employ fuzzy-neural networks, whose abilities to handle dynamical data streams and to build rule-based relationships makes them a flexible solution. A major drawback of the classical fuzzy-neural networks is the large number of parameters associated with the rules premises and consequents parts, which need to be adapted at each discrete time instant. Therefore, in this chapter several structures with reduced number of parameters lying in the framework of a NEO-Fuzzy neuron are proposed. To increase the robustness of the models when addressing to uncommon/uncertain data variations, Type-2 and Intuitionistic fuzzy logic are introduced. An approach to design a simple NEO-Fuzzy state-space predictive controller shows the potential applicability of the proposed models for process control.

AlkuperäiskieliEnglanti
OtsikkoStudies in Systems Decision and Control
AlaotsikkoPractical Issues of Intelligent Innovations
ToimittajatVasil Sgurev, Janusz Kacprzyk
Sivut181-214
Sivumäärä34
Vuosikerta140
ISBN (elektroninen)978-3-319-78437-3
DOI - pysyväislinkit
TilaJulkaistu - 26 heinäkuuta 2018
OKM-julkaisutyyppiA3 Kirjan osa tai toinen tutkimuskirja

Julkaisusarja

NimiStudies in Systems, Decision and Control
Vuosikerta140
ISSN (painettu)2198-4182
ISSN (elektroninen)2198-4190

Sormenjälki Sukella tutkimusaiheisiin 'NEO-Fuzzy Neural Networks for Knowledge Based Modeling and Control of Complex Dynamical Systems'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä

    Todorov, Y., & Terziyska, M. (2018). NEO-Fuzzy Neural Networks for Knowledge Based Modeling and Control of Complex Dynamical Systems. teoksessa V. Sgurev, & J. Kacprzyk (Toimittajat), Studies in Systems Decision and Control: Practical Issues of Intelligent Innovations (Vuosikerta 140, Sivut 181-214). (Studies in Systems, Decision and Control; Vuosikerta 140). https://doi.org/10.1007/978-3-319-78437-3_8