Near-field localization using machine learning: An empirical study

Mikko Laakso, Risto Wichman

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

106 Lataukset (Pure)

Abstrakti

Estimation methods for passive near-field localization have been studied to an appreciable extent in signal processing research. Such localization methods find use in various applications, for instance in medical imaging. However, methods based on the standard near-field signal model can be inaccurate in real-world applications, due to deficiencies of the model itself and hardware imperfections. It is expected that deep neural network (DNN) based estimation methods trained on the nonideal sensor array signals could outperform the model-driven alternatives. In this work, a DNN based estimator is trained and validated on a set of real world measured data. The series of measurements was conducted with an inexpensive custom built multichannel software-defined radio (SDR) receiver, which makes the nonidealities more prominent. The results show that a DNN based localization estimator clearly outperforms the compared model-driven method.

AlkuperäiskieliEnglanti
Otsikko2021 IEEE 93rd Vehicular Technology Conference, VTC 2021-Spring - Proceedings
KustantajaIEEE
Sivumäärä5
ISBN (elektroninen)978-1-7281-8964-2
DOI - pysyväislinkit
TilaJulkaistu - huhtik. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaIEEE Vehicular Technology Conference - Helsinki, Suomi
Kesto: 25 huhtik. 202128 huhtik. 2021
Konferenssinumero: 93

Julkaisusarja

NimiIEEE Vehicular Technology Conference
Vuosikerta2021-April
ISSN (painettu)1090-3038
ISSN (elektroninen)2577-2465

Conference

ConferenceIEEE Vehicular Technology Conference
LyhennettäVTC-Spring
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso25/04/202128/04/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Near-field localization using machine learning: An empirical study'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä