Abstrakti
We present parameterized algorithms for the k-path problem, the p-packing of q-sets problem, and the q-dimensional p-matching problem. Our algorithms solve these problems with high probability in time exponential only in the parameter (k, p, q) and using polynomial space. The constant bases of the exponentials are significantly smaller than in previous works; for example, for the k-path problem the improvement is from 2 to 1.66. We also show how to detect if a d-regular graph admits an edge coloring with d colors in time within a polynomial factor of 2(d-1)n/2. Our techniques generalize an algebraic approach studied in various recent works.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 119–139 |
Julkaisu | JOURNAL OF COMPUTER AND SYSTEM SCIENCES |
Vuosikerta | 87 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |