Nanoscale control of competing interactions and geometrical frustration in a dipolar trident lattice

Tutkimustuotos: Lehtiartikkelivertaisarvioitu


JulkaisuNature Communications
Lehden numero1
TilaJulkaistu - 1 joulukuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu



  • Lawrence Berkeley National Laboratory
  • University of Genoa
  • University of California at Santa Cruz
  • University of Hamburg
  • Daegu Gyeongbuk Institute of Science and Technology
  • University of Glasgow
  • Universidad Adolfo Ibanez


Geometrical frustration occurs when entities in a system, subject to given lattice constraints, are hindered to simultaneously minimize their local interactions. In magnetism, systems incorporating geometrical frustration are fascinating, as their behavior is not only hard to predict, but also leads to the emergence of exotic states of matter. Here, we provide a first look into an artificial frustrated system, the dipolar trident lattice, where the balance of competing interactions between nearest-neighbor magnetic moments can be directly controlled, thus allowing versatile tuning of geometrical frustration and manipulation of ground state configurations. Our findings not only provide the basis for future studies on the low-temperature physics of the dipolar trident lattice, but also demonstrate how this frustration-by-design concept can deliver magnetically frustrated metamaterials.

Lataa tilasto

Ei tietoja saatavilla

ID: 17030253