Named Entity Recognition for Spoken Finnish

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionScientificvertaisarvioitu

4 Sitaatiot (Scopus)
105 Lataukset (Pure)

Abstrakti

In this paper we present a Bidirectional LSTM neural network with a Conditional Random Field layer on top, which utilizes word, character and morph embeddings in order to perform named entity recognition on various Finnish datasets. To overcome the lack of annotated training corpora that arises when dealing with low-resource languages like Finnish, we tried a knowledge transfer technique to transfer tags from Estonian dataset. On the human annotated in-domain Digitoday dataset, out system achieved F1 score of 84.73. On the out-of-domain Wikipedia set we got F1 score of 67.66. In order to see how well the system performs on speech data, we used two datasets containing automatic speech recognition outputs. Since we do not have true labels for those datasets, we used a rule-based system to annotate them and used those annotations as reference labels. On the first dataset which contains Finnish parliament sessions we obtained F1 score of 42.09 and on the second one which contains talks from Yle Pressiklubi we obtained F1 score of 74.54.

AlkuperäiskieliEnglanti
OtsikkoAI4TV 2020 - Proceedings of the 2nd International Workshop on AI for Smart TV Content Production, Access and Delivery
KustantajaACM
Sivut25-29
Sivumäärä5
ISBN (elektroninen)9781450381468
DOI - pysyväislinkit
TilaJulkaistu - 12 lokak. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaInternational Workshop on AI for Smart TV Content Production, Access and Delivery - Virtual, Online, Yhdysvallat
Kesto: 12 lokak. 202012 lokak. 2020
Konferenssinumero: 2

Workshop

WorkshopInternational Workshop on AI for Smart TV Content Production, Access and Delivery
LyhennettäAI4TV
Maa/AlueYhdysvallat
KaupunkiVirtual, Online
Ajanjakso12/10/202012/10/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Named Entity Recognition for Spoken Finnish'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä