Abstrakti
Large matrices appearing in machine learning problems often have complex hierarchical structures that go beyond what can be found by traditional linear algebra tools, such as eigende-composition. Inspired by ideas from multiresolution analysis, this paper introduces a new notion of matrix factorization that can capture structure in matrices at multiple different scales. The resulting Multiresolution Matrix Factorizations (MMFs) not only provide a wavelet basis for sparse approximation, but can also be used for matrix compression (similar to Nyström approximations) and as a prior for matrix completion.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 31st International Conference on Machine Learning, ICML 2014 |
Kustantaja | International Machine Learning Society |
Sivut | 3591-3601 |
Sivumäärä | 11 |
ISBN (elektroninen) | 9781634393973 |
Tila | Julkaistu - 2014 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Machine Learning - Beijing, Kiina Kesto: 21 kesäk. 2014 → 26 kesäk. 2014 Konferenssinumero: 31 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Lyhennettä | ICML |
Maa/Alue | Kiina |
Kaupunki | Beijing |
Ajanjakso | 21/06/2014 → 26/06/2014 |