Multiple Hypothesis Testing Framework for Spatial Signals

Martin Golz, Abdelhak M. Zoubir, Visa Koivunen

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

9 Sitaatiot (Scopus)

Abstrakti

The problem of identifying regions of spatially interesting, different or adversarial behavior is inherent to many practical applications involving distributed multisensor systems. In this work, we develop a general framework stemming from multiple hypothesis testing to identify such regions. A discrete spatial grid is assumed for the monitored environment. The spatial grid points associated with different hypotheses are identified while controlling the false discovery rate at a pre-specified level. Measurements are acquired using a large-scale sensor network. We propose a novel, data-driven method to estimate local false discovery rates based on the spectral method of moments. Our method is agnostic to specific spatial propagation models of the underlying physical phenomenon. It relies on a broadly applicable density model for local summary statistics. In between sensors, locations are assigned to regions associated with different hypotheses based on interpolated local false discovery rates. The benefits of our method are illustrated by applications to spatially propagating radio waves.

AlkuperäiskieliEnglanti
Sivut771-787
Sivumäärä16
JulkaisuIEEE Transactions on Signal and Information Processing over Networks
Vuosikerta8
Varhainen verkossa julkaisun päivämäärä2022
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Multiple Hypothesis Testing Framework for Spatial Signals'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä