Multiobjective model-based optimization of diesel injection rate profile by machine learning methods

Eero Immonen, Mika Lauren, Lassi Roininen, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

The contribution of this article is to present a model-based machine learning methodology for automatic and simultaneous optimization of the power output and exhaust emissions of diesel internal combustion (IC) engines. We carry out parametric optimization of the rate profile at which fuel is injected into the cylinder for producing minimal nitrogen oxide (NOx) emissions and maximal cylinder power (nIMEP) output, on a computational simulation model of an Agco Power 44 AWI engine calibrated by measurements. Our results display the tradeoffs in reaching these two contradictory optimization objectives on the Pareto frontiers. We show that the so-called boot injection profile, which is commonly used in practice, also emerges through mathematical optimization as a reasonable compromise of the objectives.

AlkuperäiskieliEnglanti
OtsikkoProceedings of 14th Annual IEEE International Systems Conference, SYSCON 2020
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-7281-5365-0
DOI - pysyväislinkit
TilaJulkaistu - 9 helmik. 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Systems Conference - Virtual, Montreal, Kanada
Kesto: 24 elok. 202027 elok. 2020
Konferenssinumero: 14

Julkaisusarja

NimiAnnual IEEE Systems Conference
ISSN (elektroninen)2472-9647

Conference

ConferenceIEEE International Systems Conference
LyhennettäSYSCON
Maa/AlueKanada
KaupunkiMontreal
Ajanjakso24/08/202027/08/2020

Sormenjälki

Sukella tutkimusaiheisiin 'Multiobjective model-based optimization of diesel injection rate profile by machine learning methods'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä