Abstrakti
We present a multilabel learning approach for molecular classification, an important task in drug discovery. We use a conditional random field to model the dependencies between drug targets and discriminative training to separate correct multilabels from incorrect ones with a large margin. Efficient training of the model is ensured by conditional gradient optimization on the marginal dual polytope, using loopy belief propagation to find the steepest feasible ascent directions. In our experiments, the MMCRF method outperformed the support vector machine with state-of-the-art graph kernels on a dataset comprising of cancer inhibition potential of drug-like molecules against a large number cancer cell lines.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of The Fifth European Workshop on Probabilistic Graphical Models (PGM-2010) |
Alaotsikko | 13-15 September, 2010, Helsinki, Finland |
Toimittajat | Petri Myllymäki, Teemu Roos, Tommi Jaakkola |
Kustantaja | Helsinki Institute for Information Technology HIIT |
Sivut | 265-272 |
ISBN (elektroninen) | 978-952-60-3314-3 |
Tila | Julkaistu - 2010 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | EUROPEAN WORKSHOP ON PROBABILISTIC GRAPHICAL MODELS - Helsinki, Suomi Kesto: 13 syysk. 2010 → 15 syysk. 2010 Konferenssinumero: 5 |
Julkaisusarja
Nimi | HIIT Publications |
---|---|
Kustantaja | Helsinki Institute for Information Technology HIIT |
Numero | 2 |
Vuosikerta | 2010 |
ISSN (elektroninen) | 1458-946X |
Workshop
Workshop | EUROPEAN WORKSHOP ON PROBABILISTIC GRAPHICAL MODELS |
---|---|
Lyhennettä | PGM |
Maa/Alue | Suomi |
Kaupunki | Helsinki |
Ajanjakso | 13/09/2010 → 15/09/2010 |