Projekteja vuodessa
Abstrakti
Multi-target property prediction has the potential to improve generalization by exploiting the positive transfer between targets. Molecular generative models utilize independent single-target property prediction networks to discover novel molecules. We propose using multi-target networks to jointly predict several molecular properties and learn better representations by exploiting auxiliary information. Our multi-target model shows improvement in prediction accuracy on the test set. We additionally present results demonstrating promising performance in property prediction in these generative models does not translate to optimization. More specifically, random exploration is competitive with gradient-based strategies and better methods are needed.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 025042 |
Sivut | 1-32 |
Sivumäärä | 32 |
Julkaisu | Machine Learning: Science and Technology |
Vuosikerta | 6 |
Numero | 2 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 30 kesäk. 2025 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Multi-target property prediction and optimization using latent spaces of generative model'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
Veturi VL4Pharma Kaski S.: Virtual Laboratories for Pharmaceutical Research and Development
Kaski, S. (Vastuullinen tutkija), Jain, A. (Projektin jäsen), Masood, A. (Projektin jäsen) & Hassan, C. (Projektin jäsen)
01/09/2023 → 31/08/2025
Projekti: BF Co-Research
-
HEALED/Kaski S.: Human-steered next-generation machine learning for reviving drug design (HEALED)
Kaski, S. (Vastuullinen tutkija)
01/09/2021 → 31/08/2025
Projekti: RCF Academy Project
-
ELISE: European Learning and Intelligent Systems Excellence
Kaski, S. (Vastuullinen tutkija)
01/09/2020 → 31/08/2024
Projekti: EU H2020 Framework program