Multi-scale local-global architecture for person re-identification

Jing Liu, Prayag Tiwari*, Tri Gia Nguyen, Deepak Gupta, Shahab S. Band

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
17 Lataukset (Pure)


With the emergence of deep learning method, which has been driven a great success for the field of person re-identification (re-ID). However, the existing works mainly focus on first-order attention (i.e., spatial and channels attention) statistics to model the valuable information for person re-ID. On the other hand, most existing methods operate data points respectively, which ignores discriminative patterns to some extent. In this paper, we present an automated framework named multi-scale local-global for person re-ID. The framework consists of two components. The first component is that a high-order attention module is adopted to learn high-order attention patterns to model the subtle differences among pedestrians and to generate the informative attention features. On the other hand, a novel architecture named spectral feature transformation is designed to make for the optimization of group wise similarities. Furthermore, we fuse the components together to form an ensemble model for person re-ID. Extensive experiments were conducted on the three benchmark datasets, i.e., Market-1501, DukeMTMC-reID, CUHK03, showing the superiority of the proposed method.

JulkaisuSoft Computing
Varhainen verkossa julkaisun päivämäärä2022
DOI - pysyväislinkit
TilaJulkaistu - elok. 2022
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu


Sukella tutkimusaiheisiin 'Multi-scale local-global architecture for person re-identification'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä