Multi-regularization for fuzzy co-clustering

Vikas K. Garg, Sneha Chaudhari, Ankur Narang

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)

Abstrakti

Co-clustering is a powerful technique with varied applications in text clustering and recommender systems. For large scale high dimensional and sparse real world data, there is a strong need to provide an overlapped co-clustering algorithm that mitigates the effect of noise and non-discriminative information, generalizes well to the unseen data, and performs well with respect to several quality measures. In this paper, we introduce a novel fuzzy co-clustering algorithm that incorporates multiple regularizers to address these important issues. Specifically, we propose MRegFC that considers terms corresponding to Entropy, Gini Index, and Joint Entropy simultaneously. We demonstrate that MRegFC generates significantly higher quality results compared to many existing approaches on several real world benchmark datasets.

AlkuperäiskieliEnglanti
OtsikkoNeural Information Processing - 20th International Conference, ICONIP 2013, Proceedings
Sivut67-75
Sivumäärä9
PainosPART 2
DOI - pysyväislinkit
TilaJulkaistu - 2013
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Neural Information Processing - Daegu, Etelä-Korea
Kesto: 3 marrask. 20137 marrask. 2013
Konferenssinumero: 20

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumeroPART 2
Vuosikerta8227 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceInternational Conference on Neural Information Processing
LyhennettäICONIP
Maa/AlueEtelä-Korea
KaupunkiDaegu
Ajanjakso03/11/201307/11/2013

Sormenjälki

Sukella tutkimusaiheisiin 'Multi-regularization for fuzzy co-clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä