Motion pattern recognition in 4D point clouds

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

8 Sitaatiot (Scopus)
201 Lataukset (Pure)

Abstrakti

We address an actively discussed problem in signal processing, recognizing patterns from spatial data in motion. In particular, we suggest a neural network architecture to recognize motion patterns from 4D point clouds. We demonstrate the feasibility of our approach with point cloud datasets of hand gestures. The architecture, PointGest, directly feeds on unprocessed timelines of point cloud data without any need for voxelization or projection. The model is resilient to noise in the input point cloud through abstraction to lower-density representations, especially for regions of high density. We evaluate the architecture on a benchmark dataset with ten gestures. PointGest achieves an accuracy of 98.8%, outperforming five state-of-the-art point cloud classification models.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing, MLSP 2020
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)9781728166629
DOI - pysyväislinkit
TilaJulkaistu - syysk. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Workshop on Machine Learning for Signal Processing - Aalto University, Espoo, Suomi
Kesto: 21 syysk. 202024 syysk. 2020
Konferenssinumero: 30
https://ieeemlsp.cc

Julkaisusarja

NimiIEEE International Workshop on Machine Learning for Signal Processing
ISSN (painettu)2161-0363
ISSN (elektroninen)2161-0371

Workshop

WorkshopIEEE International Workshop on Machine Learning for Signal Processing
LyhennettäMLSP
Maa/AlueSuomi
KaupunkiEspoo
Ajanjakso21/09/202024/09/2020
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Motion pattern recognition in 4D point clouds'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä