Morphologically motivated word classes for very large vocabulary speech recognition of Finnish and Estonian

Matti Varjokallio, Sami Virpioja, Mikko Kurimo

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We study class-based n-gram and neural network language models for very large vocabulary speech recognition of two morphologically rich languages: Finnish and Estonian. Due to morphological processes such as derivation, inflection and compounding, the models need to be trained with vocabulary sizes of several millions of word types. Class-based language modelling is in this case a powerful approach to alleviate the data sparsity and reduce the computational load. For a very large vocabulary, bigram statistics may not be an optimal way to derive the classes. We thus study utilizing the output of a morphological analyzer to achieve efficient word classes. We show that efficient classes can be learned by refining the morphological classes to smaller equivalence classes using merging, splitting and exchange procedures with suitable constraints. This type of classification can improve the results, particularly when language model training data is not very large. We also extend the previous analyses by rescoring the hypotheses obtained from a very large vocabulary recognizer using class-based neural network language models. We show that despite the fixed vocabulary, carefully constructed classes for word-based language models can in some cases result in lower error rates than subword-based unlimited vocabulary language models.
AlkuperäiskieliEnglanti
Artikkeli101141
Sivumäärä19
JulkaisuComputer Speech and Language
Vuosikerta66
Varhainen verkossa julkaisun päivämäärä1 syyskuuta 2020
DOI - pysyväislinkit
TilaJulkaistu - maaliskuuta 2021
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Morphologically motivated word classes for very large vocabulary speech recognition of Finnish and Estonian'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä