Moment-preserving and mesh-adaptive reweighting method for rare-event sampling in Monte-Carlo algorithms

C. U. Schuster*, T. Johnson, G. Papp, R. Bilato, S. Sipilä, J. Varje, M. Hasenöhrl

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)

Abstrakti

We present novel roulette schemes for rare-event sampling that are both structure-preserving and unbiased. The boundaries where Monte Carlo markers are split and deleted are placed automatically and adapted during runtime. Extending existing codes with the new schemes is possible without severe changes because the equation of motion for the markers is not altered. These schemes can also be applied in the presence of nonlinear and nonlocal coupling between markers. As an illustrative application, we have implemented this method in the ASCOT-RFOF code, used to simulate fast-ion generation by radio-frequency waves in fusion plasmas. In this application, with this method the Monte-Carlo noise level for typical fast-ion energies can be reduced at least of one order of magnitude without increasing the computational effort.

AlkuperäiskieliEnglanti
Artikkeli108041
Sivumäärä12
JulkaisuComputer Physics Communications
Vuosikerta267
DOI - pysyväislinkit
TilaJulkaistu - lokak. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

We would like to thank Jakob Ameres, Roman Hatzky and Omar Maj for fruitful discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053 . The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Sormenjälki

Sukella tutkimusaiheisiin 'Moment-preserving and mesh-adaptive reweighting method for rare-event sampling in Monte-Carlo algorithms'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä