Abstrakti

Generating new molecules is fundamental to advancing critical applications such as drug discovery and material synthesis. Flows can generate molecules effectively by inverting the encoding process, however, existing flow models either require artifactual dequantization or specific node/edge orderings, lack desiderata such as permutation invariance, or induce discrepancy between the encoding and the decoding steps that necessitates post hoc validity correction. We circumvent these issues with novel continuous normalizing E(3)-equivariant flows, based on a system of node ODEs coupled as a graph PDE, that repeatedly reconcile locally toward globally aligned densities. Our models can be cast as message-passing temporal networks, and result in superlative performance on the tasks of density estimation and molecular generation. In particular, our generated samples achieve state-of-the-art on both the standard QM9 and ZINC250K benchmarks.
AlkuperäiskieliEnglanti
OtsikkoAdvances in Neural Information Processing Systems 35 (NeurIPS 2022)
ToimittajatS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
KustantajaMorgan Kaufmann Publishers
Sivumäärä13
ISBN (painettu)978-1-7138-7108-8
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - New Orleans, Yhdysvallat
Kesto: 28 marrask. 20229 jouluk. 2022
Konferenssinumero: 36
https://nips.cc/

Julkaisusarja

NimiAdvances in Neural Information Processing Systems
KustantajaMorgan Kaufmann Publishers
Vuosikerta35
ISSN (painettu)1049-5258

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso28/11/202209/12/2022
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Modular Flows: Differential Molecular Generation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä