Modification of an RBF ANN-based temperature compensation model of interferometric fiber optical gyroscopes

Jianhua Cheng, Bing Qi*, Daidai Chen, René Jr Landry

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

20 Sitaatiot (Scopus)

Abstrakti

This paper presents modification of Radial Basis Function Artificial Neural Network (RBF ANN)-based temperature compensation models for Interferometric Fiber Optical Gyroscopes (IFOGs). Based on the mathematical expression of IFOG output, three temperature relevant terms are extracted, which include: (1) temperature of fiber loops; (2) temperature variation of fiber loops; (3) temperature product term of fiber loops. Then, the input-modified RBF ANN-based temperature compensation scheme is established, in which temperature relevant terms are transferred to train the RBF ANN. Experimental temperature tests are conducted and sufficient data are collected and post-processed to form the novel RBF ANN. Finally, we apply the modified RBF ANN based on temperature compensation model in two IFOGs with temperature compensation capabilities. The experimental results show the proposed temperature compensation model could efficiently reduce the influence of environment temperature on the output of IFOG, and exhibit a better temperature compensation performance than conventional scheme without proposed improvements.

AlkuperäiskieliEnglanti
Sivut11189-11207
Sivumäärä19
JulkaisuSensors
Vuosikerta15
Numero5
DOI - pysyväislinkit
TilaJulkaistu - 13 toukokuuta 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki

Sukella tutkimusaiheisiin 'Modification of an RBF ANN-based temperature compensation model of interferometric fiber optical gyroscopes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä