Modelling Human Decision-making based on Aggregate Observation Data

Antti Kangasrääsiö, Samuel Kaski

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference contributionProfessional

66 Lataukset (Pure)

Abstrakti

Being able to infer the goals, preferences and limitations of humans is of key importance in designing interactive systems. Reinforcement learning (RL) models are a promising direction of research, as they are able to model how the behavioural patterns of users emerge from the task and environment structure. One limitation with traditional inference methods for RL models is the strict requirements for observation data; both the states of the environment and the actions of the agent need to be observed at each step of the task. This has prevented RL models from being used in situations where such fine-grained observations are not available. In this extended abstract we present results from a recent study where we demonstrated how inference can be performed for RL models even when the observation data is significantly more coarse-grained.
The idea is to solve the inverse reinforcement learning (IRL) problem using approximate Bayesian computation sped up with Bayesian optimization.
AlkuperäiskieliEnglanti
OtsikkoHuman In The Loop-ML Workshop at ICML
JulkaisupaikkaSydney
Sivumäärä4
TilaJulkaistu - 2017
OKM-julkaisutyyppiD3 Ammatillisen konferenssin julkaisusarja
TapahtumaHuman in the Loop Machine Learning; ICML Workshop - Sydney, Austraalia
Kesto: 11 elokuuta 201711 elokuuta 2017
https://machlearn.gitlab.io/hitl2017/

Workshop

WorkshopHuman in the Loop Machine Learning; ICML Workshop
LyhennettäHITL
MaaAustraalia
KaupunkiSydney
Ajanjakso11/08/201711/08/2017
www-osoite

Sormenjälki Sukella tutkimusaiheisiin 'Modelling Human Decision-making based on Aggregate Observation Data'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä