Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data – A Bayesian approach

Petri Varvia*, Miina Rautiainen, Aku Seppänen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

Hyperspectral remote sensing data carry information on the leaf area index (LAI) of forests, and thus in principle, LAI can be estimated based on the data by inverting a forest reflectance model. However, LAI is usually not the only unknown in a reflectance model; especially, the leaf spectral albedo and understory reflectance are also not known. If the uncertainties of these parameters are not accounted for, the inversion of a forest reflectance model can lead to biased estimates for LAI. In this paper, we study the effects of reflectance model uncertainties on LAI estimates, and further, investigate whether the LAI estimates could recover from these uncertainties with the aid of Bayesian inference. In the proposed approach, the unknown leaf albedo and understory reflectance are estimated simultaneously with LAI from hyperspectral remote sensing data. The feasibility of the approach is tested with numerical simulation studies. The results show that in the presence of unknown parameters, the Bayesian LAI estimates which account for the model uncertainties outperform the conventional estimates that are based on biased model parameters. Moreover, the results demonstrate that the Bayesian inference can also provide feasible measures for the uncertainty of the estimated LAI.

AlkuperäiskieliEnglanti
Sivut19-29
Sivumäärä11
JulkaisuJournal of Quantitative Spectroscopy and Radiative Transfer
Vuosikerta191
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtikuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data – A Bayesian approach'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä