Modeling temporally uncorrelated components of complex-valued stationary processes

Niko Lietzén*, Lauri Viitasaari, Pauliina Ilmonen

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

1 Sitaatiot (Scopus)
85 Lataukset (Pure)

Abstrakti

A complex-valued linear mixture model is considered for discrete weakly stationary processes. Latent components of interest are recovered, which underwent a linear mixing. Asymptotic properties are studied of a classical unmixing estimator which is based on simultaneous diagonalization of the covariance matrix and an autocovariance matrix with lag τ.The main contributions are asymptotic results that can be applied to a large class of processes. In related literature, the processes are typically assumed to have weak correlations. This class is extended, and the unmixing estimator is considered under stronger dependency structures. In particular, the asymptotic behavior of the unmixing estimator is estimated for both long-and short-range dependent complex-valued processes. Consequently, this theory covers unmixing estimators that converge slower than the usualT and unmixing estimators that produce non-Gaussian asymptotic distributions. The presented methodology is a powerful preprocessing tool and highly applicable in several fields of statistics.

AlkuperäiskieliEnglanti
Sivut475-508
Sivumäärä34
JulkaisuModern Stochastics: Theory and Applications
Vuosikerta8
Numero4
DOI - pysyväislinkit
TilaJulkaistu - marrask. 2021
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Modeling temporally uncorrelated components of complex-valued stationary processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä