Modeling movable objects improves localization in dynamic environments

Matti Pekkanen*, Francesco Verdoja, Ville Kyrki

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsProfessional

Abstrakti

Most state-of-the-art robotic maps assume a static world; therefore, dynamic objects are filtered out of the measurements. However, this division ignores movable but non-moving, i.e., semi-static objects, which are usually recorded in the map and treated as static objects, violating the static world assumption and causing errors in the localization. This paper presents a method for modeling moving and movable objects to match the map and measurements consistently. This reduces the error resulting from inconsistent categorization and treatment of non-static measurements. A semantic segmentation network is used to categorize the measurements into static and semi-static classes, and a background subtraction-based filtering method is used to remove dynamic measurements. Experimental comparison against a state-of-the-art baseline solution using real-world data from the Oxford Radar RobotCar data set shows that consistent assumptions over dynamics increase localization accuracy.
AlkuperäiskieliEnglanti
OtsikkoWorkshop on Future of Construction: Lifelong Learning Robots in Changing Construction Sites
KustantajaIEEE
Sivumäärä4
TilaJulkaistu - 13 toukok. 2024
OKM-julkaisutyyppiD3 Artikkeli ammatillisessa konferenssijulkaisussa
TapahtumaWorkshop on Future of Construction: Lifelong Learning Robots in Changing Construction Sites - Pacifico Yokohama, Yokohama, Japani
Kesto: 13 toukok. 202413 toukok. 2024
Konferenssinumero: 3
https://construction-robots.github.io/

Workshop

WorkshopWorkshop on Future of Construction
Maa/AlueJapani
KaupunkiYokohama
Ajanjakso13/05/202413/05/2024
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Modeling movable objects improves localization in dynamic environments'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä