Modeling Dependencies in Multiple Parallel Data Streams with Hyperdimensional Computing

Okko Räsänen, Sofoklis Kakouros

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    39 Sitaatiot (Scopus)

    Abstrakti

    This work presents an approach for modeling statistical
    dependencies in multivariate discrete sequences by using hyperdimensional
    random vectors. The system takes any number of
    parallel sequences as inputs and learns to predict the future states
    of these streams using the mutual dependencies between the inputs.
    Performance of the system is tested in an activity recognition task
    with data from multiple worn sensors. The results show that the
    approach outperforms the existing baseline results in the task and
    demonstrate that the system is capable to account for the varying
    reliability of different input streams.
    AlkuperäiskieliEnglanti
    Sivut899-903
    JulkaisuIEEE Signal Processing Letters
    Vuosikerta21
    Numero7
    TilaJulkaistu - 2014
    OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

    Sormenjälki

    Sukella tutkimusaiheisiin 'Modeling Dependencies in Multiple Parallel Data Streams with Hyperdimensional Computing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä